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When referring to V. V. Novozhilov's work [1] researchers have mainly gave attention to the discrete 
(the author calls it sufficient) criterion of brittle strength (see [2-4] and the references ~n [3]). However, along 
with plausible arguments, Section 2 of [1] contains the integral (the author calls it necessary) criterion of brittle 
strength; application of this criterion in determining the breaking loads for bodies with angular notches has 
made it possible to eliminate some contradictions [5]. 

"While we can (by taking necessary precautions) grow a crystal without a single dislocation in a 
macroscopic volume, a crystal without point defects cannot be created in principle" [6 (p. 5) and 7]. The 
probability that  defects appear both at the tip of a crack and in front of the crack increases considerably for 
the solid produced by powder compaction. 

The present paper deals with discrete-integral criteria of brittle strength when atomic-lattice vacancies 
are present at the tip of a crack. If in front of such a crack there are atomic-lattice defects weakening interatomic 
interactions, the above integral criterion becomes a sufficient condition of the brittle strength of a solid. Defects 
of the type of vacancies in the vicinity of the crack tip are found to exert a profound effect on the critical 
lengths of cracks for various types of loading. Relations are obtained for the critical stress-intensity factors 
(SIF) of rupture cracks and for transverse and longitudinal shears when blunted (at the atomic level) cracks 
are considered. Simple relations are obtained which make it possible to determine the safe levels of rupture 
and shear loading for brittle cracked bodies via the critical SIF, the theoretical strengths of the weakest 
interatomic bond, and the characteristics of an atomic lattice with defects. 

1. De fec t  in F r o n t  of  S h a r p  Crack .  D i s c r e t e - I n t e g r a l  C r i t e r i a  o f  B r i t t l e  S t r e n g t h .  Cracks of 
normal rupture and of transverse and longitudinal shear in a simple Bravais lattice are studied. The tip of a 
crack of length 2l is schematically depicted in Fig. 1 with allowance for defects in the atomic lattice: the plane 
:Oy is normal to the crack's rectilinear front Oz; the asterisks denote one or two vacancies, or one or two 
:lusters of 2-4 vacancies at the crack tip (atom chains - 2  and -1 ) ;  the dots denote one or two vacancies or 
me or two clusters, of 2-4 vacancies before the crack tip (atom chains 1 and 2); and the dashed lines denote 
,he crack's new front (the stability of this front is not discussed here). Atomic oscillations are ignored, i.e., 
;he material is considered at temperature T = 0. 

The probability of the formation of bi- and trivacancies is low in an ideal crystal [6]. It can be assumed 
;hat in bodies produced by powder compaction the concentration of various defects increases sharply. In 
~ddition, the presence of an impurity at the crack tip (foreigh atom in chain 0 in Fig. 1) attracts vacancies [7]. 

Following [1], we introduce integral criteria of brittle strength (a two-dimensional case, a crack of 
ength 2l): 
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- -  for sharp normal-rupture cracks [4] 

- -  for sharp transverse-shear cracks 

i__ f ~(x, O)d~ .< kre 
0 

~m; (1.1) 

~ r  e 

Z f ~.,(~,0)d~ .< "m; (1.2/ 
kre 

o 

- -  and for sharp longitudinal-shear cracks 

1 f r,.(x,O)dx <~ rm. (1.3 / 
kre 

o 

Here ay, TzU, and Tyz are the normal and shearing stresses at the crack tip (all have peculiarities of their 
own); Oxyz is the rectangular coordinate system (the orientation of the axes relative to the right-hand part 
of the crack is shown in Fig. 1); r~ is the spacing between the atomic centers; am and Tm are the theoretical 
rupture and shear strengths, respectively; n and k are numbers (Fig. 2, k < n and k is the number of active 
bonds); and nr~ is the interval of averaging in V. V. Novozhilov's formulas (1.1)-(1.3) (in Fig. 2 the notation 
for vacancies is the same as in Fig. 1). Figures 23 and 2b show schematically the location of defects near the 
crack tips for normal-rupture cracks in a simple Bravais lattice and for transverse-shear cracks in a compacted 
layer of atoms, respectively. 

Criterion (1.11 fully coincides in form with the criterion of [4], but in the former, due to the presence 
of vacancies at the crack tip, use should be made of some classical representation of the solution, because, 
within the crack, the interatomic-interaction forces are either negligibly small or absent. In the presence of 
vacancies at the tip of a crack no lattice capture occurs, and hence it is not discussed here. Using the solution 
for stresses on the extension of a sharp crack y = 0 via the SIF KI, KII, and KIII, we can write 

KI Kn Kni 
oy(x ,o)  = ooo + (2~x),/----- ~ ,  r ~ ( x , o )  = too + (2~),/------- ~ ,  ~yz(x,o) = Too + (2~x),/------- ~ ,  

where croo and too are the characteristic stresses given either at infinity or on some contour of a finite solid. 
Without vacancies before the crack front, i.e., for k = n = 1, the suggested criteria (1.1)-(1.3) become 

necessary conditions of strength (see [1]). 
Upon appropriate transformations we obtain estimates for the critical SIF K~ ~ KI*I ~ and KI*I~. For a 

sharp normal-rupture crack in the presence of vacancies at the crack tip, we have 

K~ '~ ~< a,~ k I , (1.4) 
O ' o o  72 

and for sharp transverse- and longitudinal-shear cracks, in relation (1.4) Ki *~ is replaced by KI *~ and KI*~, 
am is replaced by Tin, and ~roo by too. Thus, the three brittle-strength criteria have structures which coincide 
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with accuracy to renotation when sharp cracks are considered: the parameters n and k, which characterize 
the range of averaging and the number of active interatomic bonds, appear identically in the formulas for the 
critical SIF K~ ~ KI*I ~ and KI*I~. 

Relations (1.1)-(1.4) contain the quantities am and rm which describe the theoretical strengths. As a 
rule, however, ". . .  calculations of ideal strengths were all performed under the assumption of a homogeneous 
deformation. Strictly speaking, the results should be applicable to such problems of heterogeneous deformation 
in which stress and deformation change insignificantly at distances comparable with the range of action of 
interatomic forces. This is not true for the tip of a crack..." [8, p. 98]. Attempts to estimate the rupture 
strength of atomic chains are reported in [3, 9]. 

It is reasonable to use criteria of the (1.4) type only when vacancies or a foreign atom with a very 
weak bond are present at the tip of a crack. The presence of vacancies or a cluster of vacancies at the tip of 
a crack leads to crack blunting at the atomic level. 

2. Defec t  in F ron t  of  a B l u n t e d  Crack  and  D i s c r e t e - I n t e g r a l  C r i t e r i a  of  Br i t t l e  S t r e n g t h .  
We consider normal-rupture, transverse- and longitudinal-shear cracks that are blunted at the atomic level. 
Let the atomic structure of a material correspond to a simple Bravais lattice. Figure 3 shows schematically 
three simplest situations (the dots denote vacancies in front of a flat crack-like cavity). In Fig. 3c, one or both 
dashed atoms can be absent. For relations (1.1)-(1.3), we have n = 3 and k = 2 (Fig. 3a), and n = 2 and 
k = 1 (Figs. 3b and 3c). A similar situation also arises in a closely-packed atomic layer. For a narrow flat 
notch, the stress distributions near the notch apex can be expressed via the SIF for a crack into which the 
notch transforms as the curvature radius p at the notch apex approaches zero, i.e., p --~ 0. 

Figure 4 shows the location of the rectangular xOy and the polar Or0 coordinate systems relative to 
the notch apex. In these coordinate systems, three stress distributions relative to the notch axis were obtained 
in [10, 11]: 

Symmetrical 

cry_ (2rrr)l/2 cos ~ 1 - s i n  ~s in  ~0 - ~ r r  cos ~0 , 

c r y -  (27rr)]/2 cos ~ 1-t-sin ~ sin ~0 -4-~r cos ~0 , (2.t) 
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Fig. 4 

Asymmetrical 

KI { O 0 3 p 3 }  
Txy - (2~r)i/2 cos ~ sin ~ cos ~ 0 - ~r sin ~ 0 ; 

KII {sin /9 ( /9 3 ) p 3 } 
~ - - ( 2 ~ r ) ' n  ~ 2 + cos ~ cos ~ e + f f  sin ~ 0 , 

o~, - ( 2 ~ , - ) , n  sin ~ cos ~ cos 2 ~ sin 0 , (2.2) 

~ - ( 2 ~ ) , / 2  cos ~ 1 - sin ~ sin ~ 0 - ~ cos ~ 0 ; 

For longitudinal shear 

KIII 0 KIII 0 
rzz - -  (2~r)1/2 sin ~, ryz (2~r)1/2 cos 2 (2.3) 

The three stress fields (2.1)-(2.2) in the limit for p ~ 0 pass into the stress fields for rupture, transverse, 
and longitudinal shears, crack respectively. Note that relations (2.1)-(2.3) (see [10, 11]) do not contain terms 
defined by a ~  and r~ .  

The structure of relations (2.1)-(2.3) in each of the three cases under consideration permits a limit 
passage for p --* 0. However, for all types of cracks blunted at the atomic level with the least curvatures at the 
notch apex, one can consider only the series p ~ 0.5re, 1.0re, 1.5re, . . . ,  r , i /2 ,  . . .  for i >/ i (i is the number of 
the missing atomic layers, i = 1, 2, and 3 in Figs. 3a-3c). For a finite p at the notch apex, i.e., for 0 = 0 and 
r = p/2  on its surface, we have [see (2.1)-(2.3)]: for the first case ~r x = 0 and r,y = 0; for the second a~ = 0 
and av = 0; and for the third r,v = 0. One can, therefore, readily understand the representation of the brittle 
strength criteria (1.1)-(1.3) in which % is used in the first case [1], r~v in the second, and ryz in the third. 

Since the sufficiently detailed data on the critical lengths of normal-rupture cracks were previously 
obtained in [3, 4] using V. V. Novozhilov's modified discrete criterion for brittle strength, we now consider, 
for comparison, the problem of plane extension in the presence of a crack or a notch. If we take into account 
the location of the coordinate axes relative to the flat notch (Fig. 4), the integral brittle-strength criterion for 
a blunt normal-rupture crack has the form (nre is the interval of averaging) 

p/2+nre 
1 fX* I (1+ ~XX)] dx <~ Crm. k r-'---e f [Gc:x~ q-(2~.X) 1/'-------- ~ 

p/2 

For this problem we can determine the SIF KI via the specified stresses cror (y ~ ~ )  and the length of a 
blunt crack or a flat narrow notch 2ln} = 21(n, k) as follows: KI = aoo(Trlnk) 1/2, where the integral subscripts 
n and k characterize the interval of averaging and the number of active bonds. 
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TABLE 1 
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(16) 

(81) 
530 

(361) 
2120 

n 

32 
470 

162 
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3 

2t;, 

17 
450 

97 
1800 

I 4 

9 
440 

64 
1760 

Griffith's 

critical cracks 

430 

1720 

43000 

After appropriate manipulations for a blunt normal-rupture crack (notch) we obtain the critical SIF 
K~, which is expressed in terms of the SIF KI *~ for a sharp crack as 

if~ = K~O( p )I/2 

and the critical length 21" k of this blunt crack 

) 

(2.4) 

(2.5) 

The last parentheses in relations (2.4) and (2.5) are the corrections for crack blunting at the atomic level. In 
the particular case in which n = k = 1, relation (2.5), after transformations, coincides with the relation from 
Section 3 of [1]. An essential difference between relations (2.4) and (2.5) and the relations of [1, 4] is that the 
latter contain information on the notch curvature radius in the apex [1] and on the defects in front of a blunt 
crack and their location [4]. 

The parameter 21*k/re for a sharp and a blunt crack were calculated by formula (2.5). Table 1 gives 
the calculation results and a comparison between the relative critical lengths 21*l/re of sharp normal-rupture 
cracks (p = 0) in the presence of vacancies at the tip of the crack and in front of it (n >~ 2) when there is only 
one active interatomic bond (k = 1) and the interval of averaging is varied. The parameter n = 1, 2, 3, and 4 
characterizes this interval. In addition, for a given level of loading am/a~, the relative critical lengths 21~l/r~ 
are presented, which were obtained from relation (2.5) by the integral criterion of brittle-strength (the upper 
line) and in [4] by the discrete criterion of brittle strength (the lower line; recall that in [4] use was made of 
the Morse potential for the Griffith crack as well). 

Note that for n = k = 1 (i.e., there is no vacancy in front of a crack), the integral criterion of brittle 
strength (2.5) is only a necessary criterion [1] and, therefore, even for an overstrained zero bond (see Fig. 1) 
an atomic system without defects continues to withstand an increasing load (the fictitious critical lengths 
21~l/re are enclosed in the parentheses). The critical lengths 21*1~re that were determined by the integral 
criterion (2.5) for n = 2, 3, and 4 when vacancies exist at the tip of the crack, and in front of it, differ by an 
order of magnitude from the critical lengths 21~l/r e (n = 1, 2, 3, and 4) that were obtained by the discrete 
criterion and from the critical length of the Grit:fith crack. The critical lengths of cracks were found to be 
highly sensitive to the appearance of vacancies simultaneously at the tip and in front of cracks. 

Table 2 shows the results of calculation of the critical lengths 21*l/re of blunt normal-rupture cracks 
using only the integral brittle-strength criterion in the absence (n = 1) and in the presence of vacancies in 
front of the notch (n >/2) when there is a single active bond (k = I); the relative curvature radius p/re at 
the notch apex for each level of loading is also given. 
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T A B L E 2  

a,~/a~ p/re 

0.5 
5 1.0 

1.5 

0.5 
10 1.0 

1.5 

0.5 
20 1.0 

1.5 

100 

Tl 

2l~l/re 

(20) 11 5 - -  

(24) 12 5 
(28) 13 5 

(102) 36 18 10 
(122) 40 20 11 
(142) 44 21 II 

(452) 183 105 68 
(542) 203 113 72 
(632) 223 121 76 

(12252) 2448 
(14702) 2592 
(17152) 2736 

Comparison of the calculation results (see Tables 1 and 2) for the critical lengths of sharp and blunted 
cracks leads to the conclusion that the integral brittle-strength criterion (2.5) responds weakly to changes 
in crack blunting at the atomic level. In the presence of vacancies in front of a notch (k = 1 and n = 2, 3, 
and 4), an overstrained interatomic bond is broken to yield a notch with a sharp crack; the stability of the 
resulting, more complicated system has yet to be studied. In the absence of vacancies in front of the notch 
(n = k = 1), but in the presence of the curvature radius at the notch apex (p/re = 0.5, 1, and 1.5), fictitious 
critical lengths (enclosed in the parentheses) that agree with those for the necessary brittle-strength criterion 
(see Table 1) were obtained. 

Figure 5 illustrates the effect of the interval of averaging on the parameters of the relative critical 
lengths 21,~k/re for a given level of loading am/aoo = 10: curve 1 is constructed for k = 1 and p/re = 0; 2 for 
k = 1 and p/re = 0.5; 3 for k = 1 and p/re = 1; 4 for k = 2 and p/re = 0; 5 for k = 2 and p/re = 0.5; and 6 
for k = 2 and p/re = 0.5. Each curve consists of two parts: a dashed part and a solid part. The solid parts of 
the curves correspond to the actual critical lengths 21*jre and the dashed ones correspond to the fictitious 
critical lengths, which are determined by the necessary strength criteria [1] since n = k. Crack blunting at 
the atomic level exerts a weak effect on the critical-length parameter 21*kite when n > k. 

We consider the other types of blunt cracks. Using relations (2.2) and (2.3) and taking into account 
the terms voo, we obtain the critical SIF for a blunt crack of transverse KI* I and longitudinal KI*II shears (the 
critical SIF of sharp cracks coincide: Ki'l ~ = K~'I]): 

( p ~1/2 
= § § § 

K;I : + 1) ] ( 2 . 7 )  

It should be emphasized that if the structures of the relations of the critical SIF K~ ~ KI *~ and K~i ] 
of the three types of sharp cracks are the same [see (1.4)], the critical SIF K~, KI*I, and K~H of blunt cracks 
differ considerably [see (2.4), (2.6), and (2.7)]. The reduced curvature parameter p/2nre at the notch apex 
appears in relations (2.4), (2.6), and (2.7) differently and is connected with the interval of averaging. 
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3. E s t i m a t i o n  of  t h e  Br i t t l e  S t r e n g t h  of C o m p a c t e d  Ma te r i a l s .  We shall use the critical SIF 
obtained for different types of sharp and blunt cracks to estimate the attainable brittle strength of solids with 
defects compared with the theoretical strength of interatomic bonds. We shall further use the critical SIF KI *~ 
g~I ~ and g~I ~ for sharp cracks [see (1.4)], because the critical SIF g~,  gl*i, and g~i I of blunt cracks depend 
only slightly on crack blunting at the atomic level [see (2.4)-(2.6)]. We assume that  the material is produced 
by static or dynamic compaction of ideal cylinders with equal radii. Let the remaining pores be unfilled. 

The cross section that  is normal to the axis of cylinders produced from a porous material is presented in 
Fig. 6, where (a) corresponds to a close packing of cylinders and (b) to a packing of regular cylindrical particles 
whose centers form a simple Bravais lattice. In both cases the infinite surface is weakened by hypocyclic holes 
with three apices and astroid-shaped holes. 

We consider a plane weakened by a single hypocyclic hole with a small number of apices; for this case 
we have the following estimates of the maximum SIF [11, pp. 209 and 408-409]: 

g l  ~ (0.94 to 1.08)croo(ra) 1/2, gII  ~ (0.94 to 0.64)v~(Tra) '/2, KIII -~ (1 to 0.86)r~(Tra) 1/2. (3.1) 

Here a is the radius of a circumscribed circle for a hypocycloid and an astroid; and a ~  and v~ are the 
uniaxial tensile and shear stresses given at infinity. It is obvious that  one can approximate the first and the 
third relations from (3.1) accurately enough and the second one comparatively roughly, by the expressions 
below (under the same loading conditions) 

KI = aco(Trl) 1/2, KII = vco(Trl) 1/2, KIII = voo(Trl) 1/2, (3.2) 

where 21 is the length of an equivalent sharp crack. 
We consider the extension of a half-plane with an edge curvilinear notch with a turning point on the 

contour [11, p. 147], which simulates the extension of a half-plane obtained by compaction of the cylinders. 
In this case the-SIF are given by the expression 

KI = (3.21/2/4)cr~(Tra) 1/2 (3.3) 

(a is the notch depth),  which agrees with the SIF of the edge crack [11, p. 111] 

KI = 1.12aoo(~rl) 1/2, KII = 1.12~'oo(~r/) 1/2 (3.4) 

(l is the length of an equivalent edge crack). 
In essence, acute-angled defects are replaced by cracks. The greatest SIF are obtained for a plane with 

an astroid [the first relation from (3.1)], and, for a half-plane, the greatest SIF are obtained when there is a 
sharp notch (3.3) or an edge crack (3.4). 

Since acute-angled defects in a solid are located in a definite order, we present estimates of the SIF of 
periodically located equivalent cracks in a plane and in a half-plane. The greatest SIF KI, KII, and KIII are 
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obtained for in a collinear system of cracks and for a doubly periodic crack system, which weakens the plane, 
and, moreover, K! ~- 2crool 1/2 and KII ~ KIII ~ 2r~l U2. For a half-plat ~ the greatest SIF KI is obtained 
for an edge crack, and the greatest SIF KII for a periodic system of edge cracks, with KI ~ 2a~l I/2 and 
KII "~ 2r~l 1/2. Thus, the final estimates of the maximum SIF can be written as 

K I "~ 2aool t/2, KII -~ KIII ~ 2tool 1/2. (3.5) 

Let us use relation (1.4) for the critical SIF of sharp cracks of the three types. After the appropriate 
transformations we obtain a relation that characterizes the attainable level of tensile and shear strengths of 
cracked compacted solids in the presence of vacancies at the tip of a crack and in front of it: 

~r~ - n t \zc---n/ aoo(re)l/2 + 1 (3.6) 

Here ~rm are stresses that correspond to the theoretical breaking strength of the weakest interatomic bond in 
the system under consideration, and the other designations are the same as in Section 1. 

The relations that characterize the shear strength of cracked compacted solids have the form of (3.6) 
with the difference that K~ ~ is replaced by KI*I ~ or KI*I] , o'~ by vr and o" m by ~'m (rm are stresses that 
correspond to the theoretical shear strength of the weakest interatomic bond). 

If we ignore minor terms for cracks that are not very short at the atomic level [(l./re) 1/2 >> 1], we 
obtain simple estimates of the relative critical lengths of normal-rupture cracks from (3.5) and (3.6) which 
have the form 

l. 8 k2 ( crm ~ 2 
- - -  (3.7) 

r e 7r ~ \ o ' ~ ]  " 

For transverse- and longitudinal-shear cracks, arn/a~ is replaced by ~'m/roo in relation (3.7). 
The relative critical lengths l./re (for the given atomic-lattice parameter re) depend strongly on the 

number k of active interatomic bonds at the tip of a crack and on the theoretical strength am of the weakest 
interatomic bond, and comparatively weakly on the averaging interval nre, i.e., on the parameter n. Recall 
that the theoretical strength am is dependent not only on the interatomic potential, but also on the number of 
interatomic bonds per unit area, i.e., on re. Therefore, to increase the strength of cracked compacted bodies, 
it is desirable: 1) to improve the quality of compaction by static or dynamic compression, sometimes involving 
subsequent caking (the quality of compaction in the chosen model is described by the parameter ka/n; the 
actual values of this parameter are from 1/2 to 4/3) and 2) to exclude admixtures with small theoretical 
strength a,,~. 
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